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The dynamic analysis of a foundation pile on a two-parameter elastic soil is
performed, in the presence of non-classical boundary conditions. The soil
discontinuities are simulated through the introduction of n step variations of the
cross-section, whereas the partial restraints at the top and at the bottom are taken
into account by imposing non-classical boundary conditions. Finally, the pile is
supposed to be subjected to a conservative axial load at the tip. The analysis can
be considered to be exact, in the framework of the Euler–Bernoulli hypothesis,
the differential equation of motion is deduced and solved, and the frequency
equation is derived for an arbitrary number of steps. Some numerical examples
complete the paper.
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1. INTRODUCTION

The dynamic analysis of foundation piles cannot be performed with the simple
hypothesis of constant cross-section, because the presence of soil discontinuities
and/or building imperfections is unavoidable. Consequently, it is mandatory to
take into account the possibility of steps along the pile length.

Moreover, it is certainly possible to adopt the simple Winkler soil model [1], but
its modulus of subgrade reaction should be assumed to vary from zero at the top
to a maximum value at the bottom. A more realistic hypothesis assumes the
existence of two soil parameters [2], which can be detected starting from simple
in situ experiments, leading to the so-called Pasternak soil [3]. More generally, a
well established bibliography exists on the two-parameter elastic soil [4–11].

The boundary conditions at the pile ends cannot be precisely stated, partly
because of the unpredictable soil behaviour at the bottom, and partly because of
the influence of superstructures at the top. In fact, the usual cantilever beam
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hypothesis is by no means satisfactory, and it is more convenient to introduce
flexible ends, which can elastically react to transversal displacements and rotations.
In this way, the partial restraints at the bottom due to the soil influence—and at
the top due to some foundation block—can be easily accommodated. Finally, the
axial force at the top can be considered to be conservative in nature, as in
references [12–16].

It is evident, from the foregoing discussion, that every dynamic analysis must
take into account a large number of parameters, because at least the four end
flexibilities and the two soil parameters cannot be fixed a priori. Consequently, a
time consuming parametric analysis becomes necessary, and, from this point of
view, an exact approach seems to be quite useful.

In this paper the differential equation of motion is written and solved for a
general foundation pile with piecewise constant cross-section, in the presence of
elastically flexible ends and axial tip force. The number of cross-section steps is
arbitrary, thus allowing the exact analysis of some realistic cases. Numerical
examples complete the paper, in which the influence of the various parameters is
taken into account.

2. EXACT ANALYSIS

A foundation pile with total span L, Young modulus E and mass density r, and
assume that the cross-section is divided into N segments with length Li , area Ai

and moment of inertia Ii is considered. Moreover, the elastic soil along each
segment is assumed to be defined by the (constant) parameters kWi and kPi .

It is convenient to define N reference frames, with origins at the bottom and
at the N−1 intermediate steps, as sketched in Figure 1, whereas at the top a
compressive axial force P is acting.

If the Euler–Bernoulli slender beam theory is adopted, then the following N
equations of motion can be easily deduced by means of the Hamilton principle:

(EIi )v2i (Xi , t)+ [P− kPi ]v0i (Xi , t)+ kWivi (Xi , t)+ rAiv̈i (Xi , t)=0, (1)

where the primes denote differentiation with respect to Xi , and the dot denotes
differentiation with respect to time.

The solution can be sought in the following form:

vi (xi , t)=Vi (xi ) ejvt, (2)

where xi =Xi /L, v is the circular frequency and j=z−1.
Equation (1) becomes:

V2i (xi )+ biV0i (xi )+ c4
i Vi (xi )=0, (3)

where now the primes denote differentation with respect to xi ,

bi =(P− kPi )L
2/EIi (4)

and

c4
i =(kWi − rAiv

2)L4/EIi . (5)
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The characteristic polynomial is given by:

r4 + bir2 + c4
i =0 (6)

and its general solution is:

Vi (xi )=Ai1 er1xi +Ai2 er2xi +Ai3 er3xi +Ai4 er4xi, (7)

where r1, r2, r3 and r4 are the roots of the polynomial equation (6).
In order to find the roots, it is important to take into account that: (a) bi does

not have a definite sign; (b) c4
i does not have a definite sign.

Defining

p= r2, (8)

equation (6) becomes a second order polynomial equation:

p2 + bip+ c4
i =0. (9)

The generic solution for the ith segment is given by:

ri(1,2,3,4) =2(1/z2)z−bi 2zb2
i −4c4

i
(10)

Figure 1. The structural system.
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Figure 2. The skeleton of the matrix for the frequency equation.

and can be classified as follows:

2.1.  : bi =0

Case Ia: c4
i =0

Vi (xi )=Ai1 +Ai2xi +Ai3x2
i +Ai4x3

i . (11)

Case Ib: c4
i Q 0

Vi (xi )=Ai1 cosh aixi +Ai2 sinh aixi +Ai3 cos aixi +Ai4 sin aixi , (12)

where ai =zz−c4
i
.

Case Ic: c4
i q 0

Vi (xi )=Ai1 cosh bixi cos bixi +Ai2 sinh bixi cos bixi

+Ai3 cosh bixi sin bixi +Ai4 sinh bixi sin bixi , (13)

T 1

Non-dimensional critical loads for a pile with constant cross-section, clamped at
bottom and free at the tip, for varying values of the non-dimensional

soil parameters

Kpi

ZXXXXXXXXXXXXCXXXXXXXXXXXXV
Kwi 0 0·5 1 2·5

0 2·4674 7·4022 12·3370 27·1414
1 2·6499 7·5847 12·5195 27·3239

100 11·9964 16·9312 21·8660 36·6704
10 000 100·0123 104·9471 109·8820 124·6864

1 000 000 999·9999 1004·9348 1009·8695 1024·6740
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T 2

Non-dimensional critical loads for a two-stepped pile with x1,3 =0·4, x2 =0·2,
z1,3 =1, z2 =1·44, clamped at bottom and free at the tip, for varying values of the

non-dimensional soil parameters

Kpi

ZXXXXXXXXXXXXCXXXXXXXXXXXXV
Kwi 0 0·5 1 2·5

0 2·7463 8·7144 14·5560 31·4525
1 2·9602 8·9136 14·7410 31·5999

100 13·4850 18·6238 23·7355 38·9535
10 000 101·2131 106·2065 111·1983 126·1648

1 000 000 1000·0024 1004·9372 1009·8720 1024·6764

T 3

Non-dimensional critical loads for a two-stepped pile with x1,3 =0·1, x2 =0·8,
z1,3 =1, z2 =1·44, clamped at bottom and free at the tip, for varying values of the

non-dimensional soil parameters

Kpi

ZXXXXXXXXXXXXCXXXXXXXXXXXXV
Kwi 0 0·5 1 2·5

0 4·1896 13·3811 22·4780 49·1320
1 4·5420 13·7165 22·7957 49·3932

100 20·9572 29·2086 37·3770 61·3802
10 000 139·1708 144·9155 150·6443 167·7406

1 000 000 1034·7125 1039·7626 1044·8124 1059·9604

where:

bi = ci /z2.

2.2.  : bi q 0

Case IIa: c4
i =0

Vi (xi )=Ai1 +Ai2xi +Ai3 cos d1ixi +Ai4 sin d1ixi , (14)

where d1i =zbi.

Case IIb: c4
i Q 0

Vi (xi )=Ai1 cosh a'i xi +Ai2 sinh a'i xi +Ai3 cos a0i xi +Ai4 sin a0i xi , (15)

where:

a'i =(1/z2)z−bi +zb2
i −4c4

i
, a0i =(1/z2)zbi +zb2

i −4c4
i
. (16, 17)
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Case IIc: c4
i q 0

IIc1: b2
i =4c4

i

Vi (xi )= (Ai1 +Ai2xi ) cos d2ixi +(Ai3 +Ai4xi ) sin d2ixi , (18)

where

d2i =zbi /2.

IIc2: b2
i Q 4c4

i

Vi (xi )=Ai1 cosh gixi cos g'i xi +Ai2 sinh gixi cos g'i xi

+Ai3 cosh gixi sin g'i xi +Ai4 sinh gixi sin g'i xi , (19)

where

gi =zzc4
i /4− bi /4, g'i =zzc4

i /4+ bi /4. (20, 21)

T 4

Non-dimensional critical loads for a two-stepped pile with x1,3 =0·4, x2 =0·2,
z1,3 =1·44, z2 =1, clamped at bottom and free at the tip, for varying values of the

non-dimensional soil parameters

Kpi

ZXXXXXXXXXXXXCXXXXXXXXXXXXV
Kwi 0 0·5 1 2·5

0 2·0204 6·4530 10·8401 23·6940
1 2·1775 6·6174 11·0118 23·8877

100 9·9474 14·7573 19·5584 33·8949
10 000 98·7751 103·6423 108·5071 123·0871

1 000 000 999·9894 1004·9241 1009·8587 1024·6630

T 5

Non-dimensional critical loads for a two-stepped pile with x1,3 =0·1, x2 =0·8,
z1,3 =1·44, z2 =1, clamped at bottom and free at the tip, for varying values of the

non-dimensional soil parameters

Kpi

ZXXXXXXXXXXXXCXXXXXXXXXXXXV
Kwi 0 0·5 1 2·5

0 1·3244 4·2025 7·0197 15·1681
1 1·4383 4·3237 7·1475 15·3119

100 7·3098 10·6303 13·9003 23·4052
10 000 65·5437 69·6744 73·7864 86·0010

1 000 000 945·5941 949·8481 954·0770 966·5934
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T 6

First non-dimensional free frequency for the pile in Table 3, for various values of
the ratio g= l/lc

Kpi

ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV
Kwi g 0 0·5 1 2·5

0 0·0 1·8780 2·4565 2·7534 3·2559
0·2 1·7824 2·3425 2·6322 3·1207
0·4 1·6648 2·2007 2·4819 2·9571
0·6 1·5101 2·0104 2·2795 2·7421
0·8 1·2751 1·7122 1·9571 2·4004

1 0·0 1·9169 2·4745 2·7663 3·2638
0·2 1·8199 2·3603 2·6452 3·1289
0·4 1·7004 2·2182 2·4950 2·9658
0·6 1·5430 2·0272 2·2927 2·7515
0·8 1·3034 1·7275 1·9697 2·4107

100 0·0 3·2999 3·4624 3·5872 3·8595
0·2 3·2054 3·3705 3·4948 3·7586
0·4 3·0799 3·2518 3·3791 3·6397
0·6 2·8920 3·0767 3·2132 3·4839
0·8 2·5455 2·7442 2·8971 3·2086

10 000 0·0 10·0376 10·0559 10·0727 10·1161
0·2 9·9358 9·9626 9·9858 10·0417
0·4 9·6713 9·7300 9·7800 9·8896
0·6 9·0298 9·1160 9·1966 9·4074
0·8 7·8005 7·8887 7·9732 8·2070

1 000 000 0·0 31·6256 31·6265 31·6274 31·6299
0·2 31·3045 31·3173 31·3297 31·6113
0·4 30·2750 30·2962 30·3173 31·5041
0·6 28·2847 28·3108 28·3367 31·2211
0·8 24·4951 24·5219 24·5485 30·7818

IIc3: b2
i q 4c4

i

Vi (xi )=Ai1 cos a1i xi +Ai2 sin a1i xi +Ai3 cos a0i xi +Ai4 sin a0i xi , (22)

where

a1i =(1/z2)zbi −zb2
i −4c4

i
. (23)

2.3.   bi Q 0

Case IIIa: c4
i =0

Vi (xi )=Ai1 +Ai2xi +Ai3 cosh d3ixi +Ai4 sinh d3ixi , (24)

where d3i =z−bi .

Case IIIb: c4
i Q 0

Vi (xi )=Ai1 cosh a'i xi +Ai2 sinh a'i xi +Ai3 cos a0i xi +Ai4 sin a0i xi . (25)
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Case IIIc: c4
i q 0

IIIc1: b2
i =4c4

i

Vi (xi )= (Ai1 +Ai2xi ) cosh d4ixi +(Ai3 +Ai4xi ) sinh d4ixi , (26)

where d4i =z−bi /2.

IIIc2: b2
i q 4c4

i

Vi (xi )=Ai1 cosh a'i xi +Ai2 sinh a'i xi +Ai3 cosh dixi +Ai4 sinh dixi , (27)

where

di =(1/z2)z−bi −zb2
i −4c4

i
. (28)

IIIc3: b2
i Q 4c4

i

Vi (xi )=Ai1 cosh gixi cos g'i xi +Ai2 sinh gixi cos g'i xi

+Ai3 cosh gixi sin g'i xi +Ai4 sinh gixi sin g'i xi . (29)

T 7

First non-dimensional free frequency for the pile in Table 4, for various values of
the ratio g= l/gc .

Kpi

ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV
Kwi g 0 0·5 1 2·5

0 0·0 1·8408 2·3617 2·6215 3·0701
0·2 1·7982 2·3109 2·5659 3·0030
0·4 1·7517 2·2553 2·5051 2·9301
0·6 1·7003 2·1936 2·4379 2·8499
0·8 1·6429 1·1244 2·3625 2·7607

1 0·0 1·8790 2·3800 2·6349 3·0784
0·2 1·8358 2·3291 2·5792 3·0113
0·4 1·7886 2·2734 2·5184 2·9384
0·6 1·7365 2·2116 2·4512 2·8583
0·8 1·6782 2·1421 2·3758 2·7691

100 0·0 3·2356 3·3674 3·4661 3·6284
0·2 3·1979 3·3384 3·4237 3·5694
0·4 3·1555 3·2857 3·3779 3·5061
0·6 3·1067 3·2379 3·4237 3·4373
0·8 3·0491 3·1831 3·2714 3·3615

10 000 0·0 9·7372 9·7625 9·7843 9·8327
0·2 9·6728 9·7035 9·7307 9·7927
0·4 9·5891 9·6247 9·6569 9·7341
0·6 9·4829 9·5230 9·5596 9·6501
0·8 9·3465 9·3918 9·4332 9·5354

1 000 000 0·0 29·3143 29·3189 29·3234 29·3370
0·2 29·1666 29·1709 29·1751 29·1878
0·4 28·9966 29·0005 29·0043 29·0157
0·6 28·7974 28·8006 28·8038 28·8134
0·8 28·5574 28·5597 28·5620 28·5687
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T 8

Non-dimensional critical loads for a pile with central step z1 =1·44,
z2 =1, kwi =10, kpi =1, clamped at bottom and free at the tip, for

varying values of the non-dimensional flexibility parameter T2

T2 lc T2 lc

0 19·0362 5 7·9233
0·05 12·9709 10 7·8920
0·1 10·7252 50 7·6870
0·5 8·4771 100 7·8639
1 8·1715 a 7·8608

T 9

First and second non-dimensional free frequencies for a pile with x1,3 =0·3,
x2,4 =0·1, x5 =0·2, z1,3,5 =1, z2,4 =1·44 for various values of the

non-dimensional flexibility parameters R2 =T2

R2 =T2 V1 V2 R2 =T2 V1 V2

0 5·0035 8·1079 5 2·8630 5·4454
0·0005 4·9255 7·7719 50 2·8533 5·4273
0·005 4·3342 6·4024 500 2·8523 5·4254
0·05 3·2918 5·8691 5000 2·8522 5·4252
0·5 2·9379 5·5751 a 2·8522 5·4252

Finally, the general solution can be expressed as:

Vi (xi )=Ai1Vi,1 +Ai2Vi,2 +Ai3Vi,3 +Ai4Vi,4, (30)

where the terms Vi,k , k=1, 4 assume different values according to the above
classification.

3. BOUNDARY CONDITIONS

The boundary conditions are by no means intuitive, and it is necessary to use
an energy based approach, in order to be sure of not missing some term. They
are:

at x1 =0

R1V01 (0)=−V'1 (0), T1(V11 (0)+ b1V'1 (0))=V1(0), (31)

at xi−1 =Li−1/L and xi =0

Vi−1(xi−1)=Vi (0), V'i−1(xi−1)=V'i (0), EIi−1Vi−1(xi−1)=EIiVi (0),

EIi−1(V1i−1(xi−1)+ bi−1V'i−1(xi−1))=EIi (V1i (0)+ biV'i (0)). (32)

at xN =LN /L

R2V0N (xN )=V'N (xN ), T2(V1N (xN )+ bNV'N (xN ))=−VN (xN ). (33)
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where

R1 =EI1/kR1L, R2 =EIN /kR2L, T1 =EI1/kT1L3, T2 =EIN /kT2L3 (34)

are the non-dimensional rotational stiffnesses and axial stiffnesses, respectively,
proportional to the rotational stiffnesses kR1, kR2 and the axial stiffnesses kT1, kT2.

The above derived linear homogeneous system has non-trivial solutions if the
determinant of the coefficients is equal to zero. The first two rows of the
determinant refer to the presence of the flexible constraint at the bottom, and they
are given in Appendix 1, together with the last two rows, which refer to the
constraint at the top. The other terms of the determinant can be easily described
by looking at the matrix sketched in Figure 2. More particularly, the terms of the
ith step are given by the rows (4i−1, 4i+2), and are reported in Appendix 2.
All the other entries of the matrix are equal to zero.

4. NUMERICAL EXAMPLES

Now the following non-dimensional coefficients are defined:

KWi = kWiL4/EIi ; KPi = kPiL2/p2EIi ; Ai /A1 = zi ; Ii /I1 = z2
i (35)

and the non-dimensional axial load:

l=PL2/EI1 (36)

which has its critical value at:

lc =PcL2/EI1. (37)

Finally, it is convenient to express the results in the terms of the
non-dimensional frequency parameter:

Vi =zzrA1v
2
i L4/EI1. (38)

The following issues have been addressed:

4.1.          

In Table 1 the non-dimensional critical loads are given for a pile with constant
cross-section, z1 =1 and z2

1 =1. The pile is supposed to be clamped at the bottom
and free at the top, as can be noted from the critical load in the absence of soil.

4.2.         

In Tables 2, 3 the critical loads are given for a pile with two steps, with z1,3 =1
and z2 =1·44. In Table 2 the non-dimensional span of the first and third segments
is equal to x1,3 =0·4, whereas the intermediate segment has length equal to
x2 =0·2, so modelling the presence of an intermediate defect. The resulting values
are quite near to the corresponding values for constant cross-section.

Another case is given in Table 3, where the step locations have been changed,
in such a way that x1,3 =0·1 and x2 =0·8.
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In Tables 4, 5 the step abscissae do not change, but the central segment is
assumed to be more slender than the first and third segments, because it is assumed
z1,3 =1·44 and z2 =1.

Obviously, the critical load increases for increasing values of the soil parameters.

4.3.              

 

It is well-known that the frequencies decrease with increasing axial loads, and
that the first frequency is equal to zero when the axial load attains its critical value.
Consequently, in Tables 7, 8 the first non-dimensional frequency is reported for
various values of (g= l/lc ) and for the cases in Tables 3, 4.

It is possible to deduce that: the resulting curves are typical divergence curves;
the non-dimensional frequency increases with increasing values of the soil
parameters Kwi and Kpi .

4.4.          

In Table 8 the non-dimensional critical load has been reported for a pile with
a central step, with z1 =1·44 and z2 =1. The soil parameters are defined by
Kwi =10 and Kpi =1. The pile is supposed to be clamped at the bottom end,
whereas the other end is supposed to be elastically restrained against the
translation. The values of the non-dimensional coefficient T2 are allowed to vary
between the limiting values 0 (clamped–simply supported pile) and a
(clamped–free pile). Accordingly, the critical load decreases with increasing
flexibility values.

4.5.          

In Table 9 the first two non-dimensional frequencies have been given for a
multistep pile defined by the step abscissae x1,3 =0·3, x2,4 =0·1 and x5 =0·2 and
by the cross-section parameters z1,3,5 =1 and z2,4 =1·44. The pile is clamped at the
bottom, whereas the other end is elastically restrained against the translation and
the rotation. The two limiting cases R2 =T2 =0 and R2 =T2 =a give the
clamped–clamped pile and the clamped–free pile, respectively. Finally, the
non-dimensional soil parameters are given by Kwi =10 and Kpi =1. As can be
immediately seen, the free frequency values decrease with increasing flexibility
values.

5. CONCLUSIONS

The exact analysis of a foundation pile on Pasternak soil has been performed
in the presence of rotationally and axially flexible ends. The cross-section of the
pile is supposed to be defined by N segments with constant cross-sections, divided
by N−1 intermediate steps. The equation of motion has been derived and solved,
leading to a frequency equation in a highly regular form. Some numerical examples
end the paper, where a parametric analysis has been performed for various
parameter values.
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APPENDIX 1

a1,1 =R1V01,1 −V'1,1, a1,2 =R1V01,2 −V'1,2,

a1,3 =R1V01,3 −V'1,3, a1,4 =R1V01,4 −V'1,4,

a2,1 =T1(V11,1 + b1V'1,1)+V1,1, a2,2 =T1(V11,2 + b1V'1,2)+V1,2,

a2,3 =T1(V11,3 + b1V'1,3)+V1,3, a2,4 =T1(V11,4 + b1V'1,4)+V1,4,

a4N−1,4N−3 =R1V0N,1 +V'N,1, a4N−1,4N−2 =R1V0N,2 +V'N,2,

a4N−1,4N−1 =R1V0N,3 +V'N,3, a4N−1,4N =R1V0N,4 +V'N,4,

a4N,4N−3 =T1(V1N,1 + bNV'N,1)−VN,1, a4N,4N−2 =T1(V1N,2 + bNV'N,2)−VN,2,

a4N,4N−1 =T1(V1N,3 + bNV'N,3)−VN,3, a4N,4N =T1(V1N,4 + bNV'N,4)−VN,4.
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APPENDIX 2

aj,k =Vi−1,1, aj,k+1 =Vi−1,2, aj,k+2 =Vi−1,3, aj,k+3 =Vi−1,4,

aj,k+4 =−Vi,1, aj,k+5 =−Vi,2, aj,k+6 =−Vi,3, aj,k+7 =−Vi,4,

aj+1,k =V'i−1,1, aj+1,k+1 =V'i−1,2, aj+1,k+2 =V'i−1,3, aj+1,k+3 =V'i−1,4,

aj+1,k+4 =−V'i,1, aj+1,k+5 =−V'i,2, aj+1,k+6 =−V'i,3, aj+1,k+7 =−V'i,4,

aj+2,k =EIi−1V0i−1,1, aj+2,k+1 =EIi−1V0i−1,2, aj+2,k+2 =EIi−1V0i−1,3,

aj+2,k+3 =EIi−1V0i−1,4, aj+2,k+4 =−EIiV0i,1, aj+2,k+5 =−EIiV0i,2,

aj+2,k+6 =−EIiV01,3, aj+2,k+7 =−EIiV01,4,

aj+3,k =EIi−1(V1i−1,1 + bi−1V'i−1,1), aj+3,k+1 =EIi−1(V1i−1,2 + bi−1V'i−1,2),

aj+3,k+2 =EIi−1(V1i−1,3 + bi−1V'i−1,3), aj+3,k+3 =EIi−1(V1i−1,4 + bi−1V'i−1,4),

aj+3,k+4 =−EIi (Vi,1 + biV'i,1), aj+3,k+5 =−EIi (Vi,2 + biV'i,2),

aj+3,k+6 =−EIi (Vi,3 + biV'i,3), aj+3,k+7 =−EIi (Vi,4 + biV'i,4).
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