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The dynamic analysis of a foundation pile on a two-parameter elastic soil is
performed, in the presence of non-classical boundary conditions. The soil
discontinuities are simulated through the introduction of n step variations of the
cross-section, whereas the partial restraints at the top and at the bottom are taken
into account by imposing non-classical boundary conditions. Finally, the pile is
supposed to be subjected to a conservative axial load at the tip. The analysis can
be considered to be exact, in the framework of the Euler—Bernoulli hypothesis,
the differential equation of motion is deduced and solved, and the frequency
equation is derived for an arbitrary number of steps. Some numerical examples
complete the paper.
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1. INTRODUCTION

The dynamic analysis of foundation piles cannot be performed with the simple
hypothesis of constant cross-section, because the presence of soil discontinuities
and/or building imperfections is unavoidable. Consequently, it is mandatory to
take into account the possibility of steps along the pile length.

Moreover, it is certainly possible to adopt the simple Winkler soil model [1], but
its modulus of subgrade reaction should be assumed to vary from zero at the top
to a maximum value at the bottom. A more realistic hypothesis assumes the
existence of two soil parameters [2], which can be detected starting from simple
in situ experiments, leading to the so-called Pasternak soil [3]. More generally, a
well established bibliography exists on the two-parameter elastic soil [4-11].

The boundary conditions at the pile ends cannot be precisely stated, partly
because of the unpredictable soil behaviour at the bottom, and partly because of
the influence of superstructures at the top. In fact, the usual cantilever beam
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hypothesis is by no means satisfactory, and it is more convenient to introduce
flexible ends, which can elastically react to transversal displacements and rotations.
In this way, the partial restraints at the bottom due to the soil influence—and at
the top due to some foundation block—can be easily accommodated. Finally, the
axial force at the top can be considered to be conservative in nature, as in
references [12-16].

It is evident, from the foregoing discussion, that every dynamic analysis must
take into account a large number of parameters, because at least the four end
flexibilities and the two soil parameters cannot be fixed a priori. Consequently, a
time consuming parametric analysis becomes necessary, and, from this point of
view, an exact approach seems to be quite useful.

In this paper the differential equation of motion is written and solved for a
general foundation pile with piecewise constant cross-section, in the presence of
elastically flexible ends and axial tip force. The number of cross-section steps is
arbitrary, thus allowing the exact analysis of some realistic cases. Numerical
examples complete the paper, in which the influence of the various parameters is
taken into account.

2. EXACT ANALYSIS

A foundation pile with total span L, Young modulus £ and mass density p, and
assume that the cross-section is divided into N segments with length L,, area A,
and moment of inertia /; is considered. Moreover, the elastic soil along each
segment is assumed to be defined by the (constant) parameters ky; and kp;.

It is convenient to define N reference frames, with origins at the bottom and
at the N — 1 intermediate steps, as sketched in Figure 1, whereas at the top a
compressive axial force P is acting.

If the Euler-Bernoulli slender beam theory is adopted, then the following N
equations of motion can be easily deduced by means of the Hamilton principle:

(ELW" (Xi, 1) + [P — knloi (Xi, 1) + kwivi(X;, 1) + pAiti(Xi, 1) = 0, (1

where the primes denote differentiation with respect to X;, and the dot denotes
differentiation with respect to time.
The solution can be sought in the following form:

Uf(xi, l) = Vi(xi) ejw', (2)

where x; = X;/L, w is the circular frequency and j =./—1.
Equation (1) becomes:

V" (x:) + bV (x:) + ¢ Vi(x) =0, 3)
where now the primes denote differentation with respect to x;,
bi= (P — kp)L*|EI 4)
and

¢t = (kwi — pAw?)L*/EL. ©)
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The characteristic polynomial is given by:
4+ bt + ¢l =0 (6)
and its general solution is:
Vi(x:)) = An € + Ape™ + A e™ i + Ay e, (7

where ry, r,, r; and r, are the roots of the polynomial equation (6).

In order to find the roots, it is important to take into account that: (a) b; does
not have a definite sign; (b) ¢/ does not have a definite sign.

Defining

p=r, ®)

equation (6) becomes a second order polynomial equation:

PP+ bp+cl=0. )
The generic solution for the ith segment is given by:
Fnass = (/2 = b, + /b7 — 4ct (10)
=]
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Figure 1. The structural system.
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and can be classified as follows:

2.1. CASEL: b;,=0
Case la: ¢t =0

. DE ROSA AND M. J. MAURIZI

Figure 2. The skeleton of the matrix for the frequency equation.

Vi(xi) = An + Aoxi + Asx] + Aux;. (11)
Case 1b: ¢t <0
Vi(x;) = A cosh a;x; + Ay sinh ox; + A; cos ax; + Au Sin a;x;, (12)
where o; = \/ﬁ
Case Ic: ¢! >0
Vi(x:) = Aa cosh fix; cos fix; + Apn sinh fix; cos fix;
+ A; cosh Bix; sin fix; + A sinh fx; sin f,x;, (13)

TABLE 1

Non-dimensional critical loads for a pile with constant cross-section, clamped at
bottom and free at the tip, for varying values of the non-dimensional
soil parameters

K,

r % Al

K, 0 0-5 1 2-5
0 2-4674 7-4022 12-3370 27-1414
1 2-6499 7-5847 12-5195 27-3239
100 11-9964 16-9312 21-8660 36-6704
10 000 100-0123 104-9471 109-8820 124-6864
1 000 000 999-9999 1004-9348 1009-8695 1024-6740
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TABLE 2

Non-dimensional critical loads for a two-stepped pile with x5 =04, x, =02,
La=1, (=144, clamped at bottom and free at the tip, for varying values of the
non-dimensional soil parameters

K)i

- A )

K. 0 0-5 1 2-5
0 2-7463 8-7144 14-5560 31-4525
1 29602 89136 14-7410 31-5999
100 13-4850 18-6238 23-7355 389535
10 000 101-2131 106-2065 111-1983 126-1648
1 000 000 1000-0024 1004-9372 1009-8720 1024-6764

TABLE 3
Non-dimensional critical loads for a two-stepped pile with x5 =01, x, = 0-8,
s =1, L= 144, clamped at bottom and free at the tip, for varying values of the
non-dimensional soil parameters

K,
r A A}
K, 0 05 1 2-5
0 4-1896 13-3811 22-4780 49-1320
1 4-5420 13-7165 227957 49-3932
100 20-9572 29-2086 37-3770 61-3802
10 000 139-1708 1449155 150-6443 167-7406
1 000 000 1034-7125 10397626 1044-8124 1059-9604
where:
ﬁi = C,-/\/Q.
22. CASEIL: b; >0
Case Ma: ¢t =0
Vi(xf) = An + Aox; + A cos dyix; + Ais sin dyx;, (14)

where d;, = \/E,

Case IIb: ¢} < 0

I/[(x,') = A,‘] COSh OC,'/.X,' + A,‘Q Sinh OC,‘/XI‘ + A;3 COoS OC,‘HX[ + A,'4 Sin OC,'NX,', (15)

where:

o = (D b+ S —dc @ =D+ Jo—ac (16,17)
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Case Ilc: ¢} >0
Ilcl: b7 = 4c}

Vi(x:) = (An + AnX;) cos duxi + (An + AuX;) sin dix;, (18)
where

ds = \/bi/2.

IIc2: b? < 4¢t

Vi(x:) = Aa cosh y.x; cos y/ x; + A, sinh y,x; cos y/ x;
+ A; cosh yux; sin y/ x; + Ay sinh y,x; sin )/ x;, (19)

where

B= S A —bijd v =S A+ b4 (20,21)

TABLE 4

Non-dimensional critical loads for a two-stepped pile with x;; =04, x, =02,
Lia=144, 0 =1, clamped at bottom and free at the tip, for varying values of the
non-dimensional soil parameters

K,

- A Al

K, 0 0-5 1 2-5
0 2:0204 6-4530 10-8401 23-6940
1 2-1775 66174 11-0118 23-8877
100 9-9474 14-7573 19-5584 33-8949
10 000 98-7751 103-6423 108-:5071 123-0871
1 000 000 999-9894 1004-9241 1009-8587 1024-6630

TABLE 5

Non-dimensional critical loads for a two-stepped pile with x5 =0-1, x, = 0-8,
Lis= 1444, (, =1, clamped at bottom and free at the tip, for varying values of the
non-dimensional soil parameters

Kp,'
r A Al
K. 0 0-5 1 2:5
0 1-3244 42025 7-0197 15-1681
1 1-4383 4-3237 7-1475 15-3119
100 7-3098 10-6303 13-9003 23-4052
10 000 65-5437 69-6744 73-7864 86-:0010

1 000 000 945-5941 949-8481 954-0770 966-5934
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TABLE 6

First non-dimensional free frequency for the pile in Table 3, for various values of
the ratio y = A/A.

K,
r A A}
K. v 0 0-5 1 25
0 0-0 1-8780 2-4565 27534 3-2559
02 1-7824 2-:3425 2:6322 3-1207
0-4 1-6648 2-2007 2-4819 2:9571
06 1-5101 2:0104 2:2795 2-7421
0-8 1-2751 1-7122 1-9571 2-4004
1 0-0 1-9169 24745 2-7663 3-2638
02 1-8199 2-3603 2:6452 3-1289
0-4 1-7004 22182 2-4950 2:9658
0-6 1-5430 2:0272 2-2927 2-7515
0-8 1-3034 1-7275 1-9697 2-4107
100 0-0 3-2999 3-4624 3-5872 3-8595
02 3-2054 3-3705 3-4948 3-7586
0-4 3-0799 3:2518 3-3791 36397
0-6 2-8920 3-0767 32132 3-4839
0-8 2-5455 27442 2-8971 3-2086
10 000 0-0 10-0376 10-0559 10-0727 10-1161
0-2 9-9358 9-9626 9-9858 10-0417
0-4 9:6713 9-7300 9-7800 9-8896
0-6 9:0298 9-1160 9:1966 9-4074
0-8 7-8005 7-8887 7-9732 8-2070
1 000 000 0-0 31-6256 31-6265 31-6274 31-6299
02 31-3045 31-3173 31-3297 31-6113
0-4 30-2750 30-2962 30-3173 31-5041
0-6 28-2847 28-3108 28-3367 31-2211
0-8 24-4951 24-5219 24-5485 30-7818
11c3: b? > 4¢t
Vi(x;)) = Ancos o/’ x; + Ansin o/" x; + As cos o’ x; + Au sin o) x;, (22)

where

o = (/2 b, — /b7 — 4ct- (23)

2.3. CASEII b; < 0
Case Mla: ¢t =0

Vi(xi) = Ay + Anx; + Az cosh dyx; + A sinh d3ixf, (24)

where di; = / —b;.
Case 11Ib: ¢* < 0

I/,'(x,') = A,‘l COSh OC,'/.X,‘ -+ A,‘z Sinh OC,‘/XI‘ + A,’g COS OC,‘HX,' + A,‘4 Sin OC,*”.X','. (25)
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Case 1llc: ¢} >0
Ilcl: b? = 4¢!

Vi(x:) = (An + Anx;) cosh dyx; + (Ais + Aux;) sinh dyx;, (26)
where dy,; =/ —b:/2.
II1c2: b7 > 4c}
Vi(x;) = Aa cosh o/ x; + Ap sinh o/ x; + A cosh §;x; + Au sinh §,x;,  (27)

where

6= (/2N = b, — /b7 — 4ci- (28)

IIc3: b? < 4¢?

Vi(x:) = Aa cosh y:x; cos y/ x; + A, sinh p,x; cos y/ x;

+ A; cosh yux; sin y/ x; + A, sinh y,x; sin 9/ x;. (29)

TABLE 7

First non-dimensional free frequency for the pile in Table 4, for various values of
the ratio y = Afy..

K,
I A \
K. 0 0 0-5 1 2:5
0 0-0 1-8408 2:3617 2:6215 3-0701
0-2 1-7982 2-3109 2:5659 3-0030
0-4 1-7517 2:2553 2-5051 2-:9301
0-6 1-7003 2-1936 2:4379 2-8499
0-8 1-6429 1-1244 2:3625 2-7607
1 0-0 1-8790 2-3800 2:6349 3-0784
0-2 1-8358 2:3291 2:5792 3-0113
0-4 1-7886 2:2734 2-5184 2-9384
0-6 1-7365 2-:2116 2:4512 2-8583
0-8 1-:6782 2-1421 2-3758 2:7691
100 0-0 3-2356 3-3674 3-4661 3-6284
0-2 3-1979 3-3384 3-4237 3-5694
0-4 3-1555 3-2857 3-3779 3-5061
0-6 3-1067 3-2379 3-4237 3-4373
0-8 3-0491 3-1831 3-2714 3-3615
10 000 0-0 9-7372 9-7625 9-7843 9-8327
0-2 9-6728 9-7035 9-7307 9-7927
0-4 9-5891 9-6247 9-6569 9-7341
0-6 9-4829 9-5230 9-5596 9-6501
0-8 9-3465 9-3918 9-4332 9-5354
1 000 000 0-0 29-3143 29-3189 29-3234 29-3370
0-2 29-1666 29-1709 29-1751 29-1878
0-4 28-9966 29-0005 29-0043 29-0157
0-6 287974 28-8006 28-8038 28-8134

0-8 28-5574 28-5597 28-5620 28-5687
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TABLE 8
Non-dimensional critical loads for a pile with central step {, = 1-44,
L=1, k=10, k,; =1, clamped at bottom and free at the tip, for
varying values of the non-dimensional flexibility parameter T,

Tg ;L(- T2 )»(;
0 19-0362 5 7-9233
0-05 12-9709 10 7-8920
0-1 10-7252 50 7-6870
0-5 8-4771 100 7-8639
1 8-1715 0 7-8608
TABLE 9

First and second non-dimensional free frequencies for a pile with x,; = 0-3,
Xoa =01, xs5=02, (i35=1, La= 144 for various values of the
non-dimensional flexibility parameters R, = T,

Rg = T2 Q] Qz Rg = T2 Ql Qz

0 5-0035 8-1079 5 2-8630 5-4454
0-0005 4-9255 7-7719 50 2-8533 5-4273
0-005 4-3342 6-4024 500 2-8523 5-4254
0-05 3:2918 5-8691 5000 2-8522 5:4252
0-5 2:9379 5-5751 o0 2-8522 5-4252

Finally, the general solution can be expressed as:
Vi(xf) =AaVii+ AnVio + AaVis + AuVia, (30)

where the terms Vi, kK = 1,4 assume different values according to the above
classification.

3. BOUNDARY CONDITIONS

The boundary conditions are by no means intuitive, and it is necessary to use
an energy based approach, in order to be sure of not missing some term. They
are:

at x; =0

RVI(0) = =Vi(0),  Ti(Vi"(0) + biVi(0)) = Vi(0), (31
at x, =L, /L and x,=0
Vioi(xi—1) = Vi(0), Vioi(xi—1) = Vi(0), EL_\Vioi(xi-1) = ELV(0),
EL_(VZi(xi—1) + b View(xi—h) = EL(V"(0) + b; V7 (0)). (32)
at xy = Ly/L
RyVy(xy) = Vi(xn), (VY (xn) + by Vi(xy)) = — Va(xn). (33)
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where
Ry = El|kxn L, R, = ElylkpL, T, =ElLknL’, T,=Ely/knL® (34)

are the non-dimensional rotational stiffnesses and axial stiffnesses, respectively,
proportional to the rotational stiffnesses &z, kz and the axial stiffnesses k7, kn.

The above derived linear homogeneous system has non-trivial solutions if the
determinant of the coefficients is equal to zero. The first two rows of the
determinant refer to the presence of the flexible constraint at the bottom, and they
are given in Appendix 1, together with the last two rows, which refer to the
constraint at the top. The other terms of the determinant can be easily described
by looking at the matrix sketched in Figure 2. More particularly, the terms of the
ith step are given by the rows (4i — 1, 4i + 2), and are reported in Appendix 2.
All the other entries of the matrix are equal to zero.

4. NUMERICAL EXAMPLES

Now the following non-dimensional coefficients are defined:
Kwi = kwiL*|EL;  Kn=knLl?/mEL;  AijAi=0(;  L/L=0  (39)
and the non-dimensional axial load:
) = PL*EI, (36)
which has its critical value at:
J.= P.L*|EI. 37)

Finally, it is convenient to express the results in the terms of the
non-dimensional frequency parameter:

Q =/ /pA0?L*EI (38)

The following issues have been addressed:

4.1. THE INFLUENCE OF THE SOIL PARAMETERS ON THE CRITICAL LOAD

In Table 1 the non-dimensional critical loads are given for a pile with constant
cross-section, {; = 1 and {} = 1. The pile is supposed to be clamped at the bottom
and free at the top, as can be noted from the critical load in the absence of soil.

4.2. THE INFLUENCE OF THE STEPS ON THE CRITICAL LOAD

In Tables 2, 3 the critical loads are given for a pile with two steps, with {;3 =1
and {, = 1-44. In Table 2 the non-dimensional span of the first and third segments
is equal to x;; = 0-4, whereas the intermediate segment has length equal to
x> = 0-2, so modelling the presence of an intermediate defect. The resulting values
are quite near to the corresponding values for constant cross-section.

Another case is given in Table 3, where the step locations have been changed,
in such a way that x,; = 0-1 and x, = 0-8.
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In Tables 4, 5 the step abscissae do not change, but the central segment is
assumed to be more slender than the first and third segments, because it is assumed
{iz=144and = 1.

Obviously, the critical load increases for increasing values of the soil parameters.

4.3. THE INFLUENCE OF THE AXIAL LOAD AND OF THE SOIL PARAMETERS ON THE FIRST
FREE FREQUENCY

It is well-known that the frequencies decrease with increasing axial loads, and
that the first frequency is equal to zero when the axial load attains its critical value.
Consequently, in Tables 7, 8 the first non-dimensional frequency is reported for
various values of (y = A/4.) and for the cases in Tables 3, 4.

It is possible to deduce that: the resulting curves are typical divergence curves;
the non-dimensional frequency increases with increasing values of the soil
parameters K,; and K.

4.4, THE INFLUENCE OF THE END FLEXIBILITIES ON THE CRITICAL LOAD

In Table 8 the non-dimensional critical load has been reported for a pile with
a central step, with {, = 144 and {, = 1. The soil parameters are defined by
K,;=10 and K, = 1. The pile is supposed to be clamped at the bottom end,
whereas the other end is supposed to be elastically restrained against the
translation. The values of the non-dimensional coefficient 7 are allowed to vary
between the limiting values 0 (clamped-simply supported pile) and oo
(clamped—free pile). Accordingly, the critical load decreases with increasing
flexibility values.

4.5. THE INFLUENCE OF THE END FLEXIBILITIES ON THE FREE FREQUENCIES

In Table 9 the first two non-dimensional frequencies have been given for a
multistep pile defined by the step abscissae x;; = 0-3, x,4 = 0-1 and x; = 0-2 and
by the cross-section parameters ;35 = 1 and {,4 = 1-44. The pile is clamped at the
bottom, whereas the other end is elastically restrained against the translation and
the rotation. The two limiting cases R, =7,=0 and R, =T, = oo give the
clamped—clamped pile and the clamped—free pile, respectively. Finally, the
non-dimensional soil parameters are given by K,;= 10 and K, = 1. As can be
immediately seen, the free frequency values decrease with increasing flexibility
values.

5. CONCLUSIONS

The exact analysis of a foundation pile on Pasternak soil has been performed
in the presence of rotationally and axially flexible ends. The cross-section of the
pile is supposed to be defined by N segments with constant cross-sections, divided
by N — 1 intermediate steps. The equation of motion has been derived and solved,
leading to a frequency equation in a highly regular form. Some numerical examples
end the paper, where a parametric analysis has been performed for various
parameter values.
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APPENDIX 1
an = RV — Vi, ay = RV, — Vi,
az = RV — Vi, aa= R Vs — Vi,
=TV + b Vi) + Vi, =TV 4+ b Vis) + Via,
as=T\(V5+ b Vis) + Vi, aa=T\(Vs+ b Vi) + Vi,
sy —1av—3 = R Vi, + Vi, sy —1av—2= R Vs + Vi,
Aan—1av 1= R Vs + Vi, sy —1av = R Vya+ Vi,
asyvay—3 = Ti(VN¥1 + by Vi) — Vi, Asvay 2= Ti(VN2 + by Vi) — Vo,
asyan 1= Ti(VNs + by Vis) — Vs, Asnay = Ti(VNa + by Vi) — Via.
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APPENDIX 2
djx = I/i—l,la Aij+1 = I/ifl,Z: Aij+2 = Vf71,3, Ak +3 = Vf71,4,
Ajj+4= — Vii, Ajj+5 = — Vi, Aik+6 = — Vis, Ajk+7= — Via,

’

7 7 7 _
G =Viow, Grwar=Vicia, Grusr=Vios, ez =Vio,

’

iylk+4 = — Vi, jt1k+s = — Vis, djtik+6 = — Vis, jy1k+7 = — T4
djyorp = EL_\VI_,, djyok+1 = EL_\VI_,, Ajyok+2 = EL_\VI_;,
iy 2k+3 = EL_\Vi_ a4, Ajiopva = —ELVE, jyrn+5= —EI i,
djt2k+6 = _EIiVI,C% djto2k+7 = _EIIVI,CM

Qi =EL (V21 + b2 Vi), Aysprr=EL (V24 b2 Vis,),

AGisprro=FEL (V2 s+ b2 Vi), Gusxss=EL(VIZia+ b Vo),
Aj13k+4 = _EII(VII + binil), Ajy3k+5 = —EL(V,Z + biVi/,Z)a
Qivspre = —ELVis + b VD), ivsk+7= —EL(Via + b Viy).
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